02. Toolkit
DSIER [/d1'za1ar/] — Summer 2022

Julian Hinz

Bielefeld University

DOCKER + VSCODE WORKING?

Session Roadmap

e The Shell

e R

SHELL

Shell

Terminology: shell, terminal, tty, command prompt, etc.
— Same same: command line interface (CLI)

Many shell variants: focus on Bash (“Bourne again shell”)
Included by default on Linux and MacOS

Windows users need to install a Bash-compatible shell

Shell

e Powerful: executing commands and for fixing problems
— some things you just can’t do in an IDE or GUI
e Reproducibility: Scripting is reproducible, clicking is not
e Remote: Interacting with servers and super computers
e Automation: workflow and analysis pipelines, e.g. with Makefile

eee DSIER [Dev Container: DSIER Docker] oo ®
ExpLORER
* DSIER [DEV CONTAINER: DSIERDOCKER] [B O &
> .devcontainer
> 01-getting-started
Z) ~ 02-toolkit
< .gitignore
(README.md
&

8
I:@
PROBLEWS OUTPUT TERMINAL PORTS @) DEBUG CONSOLE 4o oA

Dev Contai..
bash

astronaut » /workspaces/DSIER (main) $ [

®

> OUTLINE
> TIMELINE

SHELL

Basics

username@hostname:~$

o JUSEFA&EMe] denotes a specific user
o _ denotes name of the computer

o B8 denotes the directory path (where [signifies the user’s home directory).
° . denotes the start of the command prompt (. for root)

Keyboard shortcuts

Tab completion

T (and |) keys to scroll through previous commands
Ctrl + = (and Ctrl + <) to skip whole words at a time
Ctrl + a moves the cursor to the beginning of the line

Ctrl + e moves the cursor to the end of the line

Ctrl + k deletes everything to the right of the cursor

Ctrl + u deletes everything to the left of the cursor
Ctrl + Shift + c to copy and Ctrl + Shift + v to paste

10

Syntax
* command option(s) argument(s)
astronaut -» /workspaces/DSIER (main) $ ls -1lh
total 4.0K
drwxr-xr-x 3 astronaut astronaut 96 Apr 26 19:03 01-getting-started

drwxr-xr-x 2 astronaut astronaut 64 Apr 26 19:03 02-toolkit
-rw-r--r-- 1 astronaut astronaut 135 Apr 19 15:43 README.md

— start with a dash, usually one letter
— multiple options can be chained under single dash, sometimes two

$ 1s -lah 01-getting-started/
$ ls --group-directories-first --human-readable 01-getting-started/

e arguments usually on file or directory ”

man and cheat

Navigation

° - to print working directory
o - to change directory

astronaut -» /workspaces/DSIER (matin
/workspaces/DSIER

astronaut » /workspaces/DSIER (main
astronaut -» /workspaces $ pwd
/workspaces

astronaut » /workspaces $

$ pwd

$ cd

ool

13

Create files and directories

 [EGUEHI and [k

14

Removing files and directories

e “recursive” (-r or -R) and "force” (-f) options

i5

Copying

— keeps old name if not provided with new one

16

Moving and renaming

$ mv example.txt testing/example2.txt

$ ls testing

example2.txt example.txt

$ mv testing/example2.txt testing/example_new.txt
$ 1s testing

example_new.txt example.txt

v

Wildcards

e Wildcards: special characters as replacements for other characters
e Replace any number of characters with *

$ cp examples/*.sh examples/copies
$ rm examples/copies/*

e Replace a single character with ?

$ 1ls examples/meals/??nday.csv
$ 1ls examples/meals/?onday.csv

18

MORE USEFUL COMMANDS

Working with text files

e Print whole file with €&l (“concatenate”)

$ cat -n examples/sonnets.txt

¢ Print only first or last couple of lines with - and -

$ head -n 3 examples/sonnets.txt ## First 3 rows
$ tail -n 1 examples/sonnets.txt ## Last row

20

Working with text files

e Search within files: - (“Global regular expression print”)

21

Redirect

e Send output from the shell to a file using redirect operator B

$ echo "At first, I was afraid, I was petrified" > survive.txt
$ find survive.txt
survive.txt

e To append file, use [B= (B overwrites)

$ echo "'Kept thinking I could never live without you by my side" >> survive.
$ cat survive.txt
At first, I was afraid, I was petrified

Kept thinking I could never live without you by my side

22

Pipes

e Awesome feature: send (“pipe”) output to another command with .

— chain together a sequence of simple operations

$ cat -n examples/sonnets.txt | head -n100 | tail -n10

23

Compress and decompress
e Compress data with - and decompress with -

$ zip archive.zip examples/sonnets.txt
adding: examples/sonnets.txt (deflated 59%

$ unzip -1 archive.zip
Archive: archive.zip
Length Date Time Name

95662 2022-04-26 20:18 examples/sonnets.txt

$ unzip archive.zip -d examples
Archive: archive.zip
inflating: examples/examples/sonnets.txt

24

LOOPS AND SCRIPTING

Loops

e Repeat operation over set: Loops

e Example: Combing csv files

Scripting

e sh file with code can be executed

echo -e "\nHello World!\n"

° _ is a shebang, indicating which program to run the command with
— -e flag tells bash that we want to evaluate an expression rather than a file

$ examples/hello.sh
Hello World!

27

e Not limited to running shell scripts in the shell

e Example: -

28

MAKE

Build systems

e Sequence of operations to go from inputs to outputs
— Define dependencies, targets, and rules
e Avoid unnecessary rule execution

e Many build systems, make is a common choice

30

Makefile Example

target .. : prerequisites ..
recipe

paper.pdf: paper.tex plot-data.png
pdflatex paper.tex

plot-%.png: %.csv plot.R
./plot.r -1 $*.csv -0 $@

Targets, dependencies, and rules defined in Makefile

% is a pattern, matching the same string on left and right
wildcard * searches your filesystem for matching filenames
¢ $@ is an automatic variable that contains the target name

31

Running make

$ make

make: *** No rule to make target 'paper.tex',

$ touch paper.tex

$ make

make: *** No rule to make target 'plot-data.png’,

e make checks for rules and dependencies
— complains if dependencies are missing

32

Building with make

cat paper.tex

cat plot.r

cat data.csv

make

./plot.r -1 data.csv -o plot-data.png
pdflatex paper.tex

A A S

e Creates a PDF when all dependencies are satisfied
¢ Running make again shows it’s up to date

33

make

e Build systems, like make, automate the build process
e Saves time and ensures consistency in complex projects

e Essential tool for managing dependencies and targets

34

GIT

4 main Git operations

1. Stage (or “add”): Add changes to the repo history
— file edits, additions, deletions, etc.

36

4 main Git operations

1. Stage (or “add”): Add changes to the repo history

— file edits, additions, deletions, etc.
2. Commit: Yes, you are sure these changes should be part of the repo history

— need to add a message (and optionally a description)

36

4 main Git operations

1. Stage (or “add”): Add changes to the repo history
— file edits, additions, deletions, etc.

2. Commit: Yes, you are sure these changes should be part of the repo history
— need to add a message (and optionally a description)

3. Pull: Download new changes made on the GitHub repo (i.e. the upstream remote)
— either by your collaborators or you on another machine

36

4 main Git operations

1. Stage (or “add”): Add changes to the repo history
— file edits, additions, deletions, etc.

2. Commit: Yes, you are sure these changes should be part of the repo history
— need to add a message (and optionally a description)

3. Pull: Download new changes made on the GitHub repo (i.e. the upstream remote)
— either by your collaborators or you on another machine

4. Push: Upload any (committed) local changes to the GitHub repo

36

Merge conflicts

README
Some text here.
<<<<<<< HEAD

Text added by Partner 2.

Text added by Partner 1.
>>>>>>> 814e09178910383¢128045ce67a58c9c1df3f558.
More text here.

e Delete lines that you don't want, then special Git merge conflict symbols
e Then: stage, commit, pull and push

37

Branches and forks

Branch

e Take snapshot of existing repo and try out a whole new idea without affecting your
main branch

e |f new idea works, merge back into main branch
— fix bugs
— implement new empirical strategies, robustness checks, ...

e |f it doesn’t work, just delete experimental branch

38

Branches and forks

Fork

e Forking a repo similar to branch, but creates a copy of entire repo
e Upstream pull request makes merge back into origin repo possible

— Easy to do on Github

39

.gitignore

e Tells Git what to ignore
— exclude whole folders or a class of files (e.g. based on size or type)

e Simply add names of files or folders that should be ignored

40

WRAP UP

e So far: Shell, git and Make

® This afternoon: R

42

02. Toolkit
DSIER [/d1'za1ar/] — Summer 2022

Julian Hinz

Bielefeld University

43

	Introduction
	Shell
	Navigation, files and directories
	More useful commands
	Loops and scripting
	Make
	Git
	Conclusion

