
02. Toolkit
DSIER [/dɪˈzaɪər/] — Summer 2022

Julian Hinz

Bielefeld University

1

DOCKER + VSCODE WORK ING?

Session Roadmap

• The Shell

• R

3

SHELL

Shell

• Terminology: shell, terminal, tty, command prompt, etc.
→ Same same: command line interface (CLI)

• Many shell variants: focus on Bash (“Bourne again shell”)
• Included by default on Linux and MacOS
• Windows users need to install a Bash‐compatible shell

5

Shell

• Powerful: executing commands and for fixing problems
→ some things you just can’t do in an IDE or GUI

• Reproducibility: Scripting is reproducible, clicking is not
• Remote: Interacting with servers and super computers
• Automation: workflow and analysis pipelines, e.g. with Makefile

6

SHELL

Basics

username@hostname:~$

• username denotes a specific user
• hostname denotes name of the computer
• :~ denotes the directory path (where ~ signifies the user’s home directory).
• $ denotes the start of the command prompt (# for root)

9

Keyboard shortcuts

• Tab completion
• ↑ (and ↓) keys to scroll through previous commands
• Ctrl + → (and Ctrl + ←) to skip whole words at a time
• Ctrl + a moves the cursor to the beginning of the line
• Ctrl + e moves the cursor to the end of the line
• Ctrl + k deletes everything to the right of the cursor
• Ctrl + u deletes everything to the left of the cursor
• Ctrl + Shift + c to copy and Ctrl + Shift + v to paste

10

Syntax
• command option(s) argument(s)

astronaut ➜ /workspaces/DSIER (main) $ ls -lh
total 4.0K
drwxr-xr-x 3 astronaut astronaut 96 Apr 26 19:03 01-getting-started
drwxr-xr-x 2 astronaut astronaut 64 Apr 26 19:03 02-toolkit
-rw-r--r-- 1 astronaut astronaut 135 Apr 19 15:43 README.md

→ start with a dash, usually one letter
→ multiple options can be chained under single dash, sometimes two

$ ls -lah 01-getting-started/
$ ls --group-directories-first --human-readable 01-getting-started/

• arguments usually on file or directory
11

man and cheat

•
man ls

•
$ cheat ls
Displays everything in the target directory
ls path/to/the/target/directory
##
Displays everything including hidden files
ls -a
##
Displays all files, along with the size (with unit suffixes) and timestamp
ls -lh
##
Display files, sorted by size
ls -S
##

12

Navigation

• pwd to print working directory

• cd to change directory

astronaut ➜ /workspaces/DSIER (main) $ pwd
/workspaces/DSIER
astronaut ➜ /workspaces/DSIER (main) $ cd ../
astronaut ➜ /workspaces $ pwd
/workspaces
astronaut ➜ /workspaces $

13

Create files and directories

• touch and mkdir

$ mkdir testing
$ touch testing/test1.txt testing/test2.txt testing/test3.txt
$ ls testing
test1.txt test2.txt test3.txt

14

Removing files and directories

• rm

$ rm testing/test1.txt
$ ls testing
test2.txt test3.txt
$ rm testing
rm: cannot remove 'testing': Is a directory
$ rm -rf testing
$ ls testing
ls: cannot access 'testing': No such file or directory

• “recursive” (‐r or ‐R) and ”force” (‐f) options

15

Copying

• cp object path/copyname
→ keeps old name if not provided with new one

$ touch example.txt
$ mkdir testing
$ cp example.txt testing
$ ls testing
example.txt

16

Moving and renaming

• mv object path/newobjectname

$ mv example.txt testing/example2.txt
$ ls testing
example2.txt example.txt
$ mv testing/example2.txt testing/example_new.txt
$ ls testing
example_new.txt example.txt

17

Wildcards
• Wildcards: special characters as replacements for other characters
• Replace any number of characters with *

$ cp examples/*.sh examples/copies ## Copy any file with .sh extension
$ rm examples/copies/* ## Delete everything in the "copies" directory

• Replace a single character with ?

$ ls examples/meals/??nday.csv
$ ls examples/meals/?onday.csv
examples/meals/monday.csv
examples/meals/sunday.csv
examples/meals/monday.csv

18

MORE USEFUL COMMANDS

Working with text files

• Print whole file with cat (“concatenate”)

$ cat -n examples/sonnets.txt

• Print only first or last couple of lines with head and tail

$ head -n 3 examples/sonnets.txt ## First 3 rows
$ tail -n 1 examples/sonnets.txt ## Last row

20

Working with text files

• Search within files: grep (“Global regular expression print”)

$ wc examples/sonnets.txt
2633 17698 95662 examples/sonnets.txt

$ grep -n "Shall I compare thee" examples/sonnets.txt

21

Redirect

• Send output from the shell to a file using redirect operator >

$ echo "At first, I was afraid, I was petrified" > survive.txt
$ find survive.txt
survive.txt

• To append file, use >> (> overwrites)

$ echo "'Kept thinking I could never live without you by my side" >> survive.txt
$ cat survive.txt
At first, I was afraid, I was petrified
'Kept thinking I could never live without you by my side

22

Pipes

• Awesome feature: send (“pipe”) output to another command with |

→ chain together a sequence of simple operations

$ cat -n examples/sonnets.txt | head -n100 | tail -n10

23

Compress and decompress
• Compress data with zip and decompress with unzip

$ zip archive.zip examples/sonnets.txt
adding: examples/sonnets.txt (deflated 59%)

$ unzip -l archive.zip
Archive: archive.zip

Length Date Time Name
--------- ---------- ----- ----

95662 2022-04-26 20:18 examples/sonnets.txt
--------- -------

95662 1 file

$ unzip archive.zip -d examples
Archive: archive.zip
inflating: examples/examples/sonnets.txt

24

LOOPS AND SCR IPT ING

Loops
• Repeat operation over set: Loops

for i in LIST
do

OPERATION $i
done

• Example: Combing csv files

$ touch examples/meals/mealplan.csv
loop over the input files and append their contents to our new CSV
$ for i in $(ls examples/meals/*day.csv)
> do
> cat $i >> examples/meals/mealplan.csv
> done

26

Scripting

• .sh file with code can be executed

#!/bin/sh
echo -e "\nHello World!\n"

• #!/bin/sh is a shebang, indicating which program to run the command with
→ ‐e flag tells bash that we want to evaluate an expression rather than a file

$ examples/hello.sh
Hello World!

27

• Not limited to running shell scripts in the shell
• Example: Rscript

$ Rscript -e 'cat("Hello World, from R!")'
Hello World, from R!

28

MAKE

Build systems

• Sequence of operations to go from inputs to outputs

→ Define dependencies, targets, and rules

• Avoid unnecessary rule execution

• Many build systems, make is a common choice

30

Makefile Example

target … : prerequisites …
recipe
…

paper.pdf: paper.tex plot-data.png
pdflatex paper.tex

plot-%.png: %.csv plot.R
./plot.r -i $*.csv -o $@

• Targets, dependencies, and rules defined in Makefile
• % is a pattern, matching the same string on left and right
• wildcard ∗ searches your filesystem for matching filenames
• $@ is an automatic variable that contains the target name

31

Running make

$ make
make: *** No rule to make target 'paper.tex', ...
$ touch paper.tex
$ make
make: *** No rule to make target 'plot-data.png', ...

• make checks for rules and dependencies
→ complains if dependencies are missing

32

Building with make

$ cat paper.tex
$ cat plot.r
$ cat data.csv
$ make
./plot.r -i data.csv -o plot-data.png
pdflatex paper.tex

• Creates a PDF when all dependencies are satisfied
• Running make again shows it’s up to date

33

make

• Build systems, like make, automate the build process

• Saves time and ensures consistency in complex projects

• Essential tool for managing dependencies and targets

34

GIT

4 main Git operations

1. Stage (or “add”): Add changes to the repo history
→ file edits, additions, deletions, etc.

2. Commit: Yes, you are sure these changes should be part of the repo history
→ need to add a message (and optionally a description)

3. Pull: Download new changes made on the GitHub repo (i.e. the upstream remote)
→ either by your collaborators or you on another machine

4. Push: Upload any (committed) local changes to the GitHub repo

36

4 main Git operations

1. Stage (or “add”): Add changes to the repo history
→ file edits, additions, deletions, etc.

2. Commit: Yes, you are sure these changes should be part of the repo history
→ need to add a message (and optionally a description)

3. Pull: Download new changes made on the GitHub repo (i.e. the upstream remote)
→ either by your collaborators or you on another machine

4. Push: Upload any (committed) local changes to the GitHub repo

36

4 main Git operations

1. Stage (or “add”): Add changes to the repo history
→ file edits, additions, deletions, etc.

2. Commit: Yes, you are sure these changes should be part of the repo history
→ need to add a message (and optionally a description)

3. Pull: Download new changes made on the GitHub repo (i.e. the upstream remote)
→ either by your collaborators or you on another machine

4. Push: Upload any (committed) local changes to the GitHub repo

36

4 main Git operations

1. Stage (or “add”): Add changes to the repo history
→ file edits, additions, deletions, etc.

2. Commit: Yes, you are sure these changes should be part of the repo history
→ need to add a message (and optionally a description)

3. Pull: Download new changes made on the GitHub repo (i.e. the upstream remote)
→ either by your collaborators or you on another machine

4. Push: Upload any (committed) local changes to the GitHub repo

36

Merge conflicts

README
Some text here.
<<<<<<< HEAD
Text added by Partner 2.
=======
Text added by Partner 1.
>>>>>>> 814e09178910383c128045ce67a58c9c1df3f558.
More text here.

• Delete lines that you don’t want, then special Git merge conflict symbols
• Then: stage, commit, pull and push

37

Branches and forks

Branch

• Take snapshot of existing repo and try out a whole new idea without affecting your
main branch

• If new idea works, merge back into main branch
→ fix bugs
→ implement new empirical strategies, robustness checks, …

• If it doesn’t work, just delete experimental branch

38

Branches and forks

Fork

• Forking a repo similar to branch, but creates a copy of entire repo

• Upstream pull request makes merge back into origin repo possible

→ Easy to do on Github

39

.gitignore

• Tells Git what to ignore

→ exclude whole folders or a class of files (e.g. based on size or type)

• Simply add names of files or folders that should be ignored

40

WRAP UP

• So far: Shell, git and Make

• This afternoon: R

42

02. Toolkit
DSIER [/dɪˈzaɪər/] — Summer 2022

Julian Hinz

Bielefeld University

43

	Introduction
	Shell
	Navigation, files and directories
	More useful commands
	Loops and scripting
	Make
	Git
	Conclusion

