Social Media Data

DSIER [/dr'zarər/]
Julian HInz and Irene lodice
Bielefeld University

JAN

JAN THE WORLD'S MOST-USED SOCIAL PLATFORMS

Online services

- Twitter, LinkedIn, Facebook, Instagram, TikTok, ...
- Content, but also metadata
- (Used to?) provide some data access \rightarrow currently in flux

Online services

- Twitter, LinkedIn, Facebook, Instagram, TikTok, ...
- Content, but also metadata
- (Used to?) provide some data access
\rightarrow currently in flux

Online services

- Twitter, LinkedIn, Facebook, Instagram, TikTok, ...
- Content, but also metadata
- (Used to?) provide some data access
currently in fux

Online services

- Twitter, LinkedIn, Facebook, Instagram, TikTok, ...
- Content, but also metadata
- (Used to?) provide some data access
\rightarrow currently in flux

Pros and Cons

- Facebook Data
\rightarrow large community, representative across income distribution
\rightarrow not accessible to users, not representative across age groups
- Twitter data
\rightarrow less large community, less representative across income distribution

Pros and Cons

- Facebook Data
\rightarrow large community, representative across income distribution
\rightarrow not accessible to users, not representative across age groups
- Twitter data
\rightarrow less large community, less representative across income distribution

Pros and Cons

- Facebook Data
\rightarrow large community, representative across income distribution
\rightarrow not accessible to users, not representative across age groups
- Twitter data
\rightarrow less large community, less representative across income distribution

Pros and Cons

- Facebook Data
\rightarrow large community, representative across income distribution
\rightarrow not accessible to users, not representative across age groups
- Twitter data
\rightarrow less large community, less representative across income distribution

Pros and Cons

- Facebook Data
\rightarrow large community, representative across income distribution
\rightarrow not accessible to users, not representative across age groups
- Twitter data
\rightarrow less large community, less representative across income distribution
\rightarrow freely accessible, rich data

Pros and Cons

- Facebook Data
\rightarrow large community, representative across income distribution
\rightarrow not accessible to users, not representative across age groups
- Twitter data
\rightarrow less large community, less representative across income distribution
\rightarrow freely accessible, rich data

FACEBOOK DATA

JAN
 FACEBOOK MARKETPLACE DEMOGRAPHICS

2022
DEMOGRAPHIC PROFILE OF THE AUDIENCE THAT MARKETERS CAN REACH WITH ADS ON FACEBOOK MARKETPLACE

Social Connectedness: Measurement, Determinants, and Effects

Michael Bailey, Rachel Cao, Theresa Kuchler, Johannes Stroebel, and Arlene Wong

Social networks can shape many aspects of social and economic activity: migration and trade, job-seeking, innovation, consumer preferences and sentiment, public health, social mobility, and more. In turn, social networks themselves are associated with geographic proximity, historical ties, political boundaries, and other factors. Traditionally, the unavailability of large-scale and representative data on social connectedness between individuals or geographic regions has posed a challenge for empirical research on social networks. More recently, a body of such research has begun to emerge using data on social connectedness from online social networking services such as Facebook, LinkedIn, and Twitter. To date, most

- Strength of connectedness between two geographic areas as represented by Facebook friendship ties
- Access data thanks to Micheal Bailey (Facebook)
- Validate their Social Connectedness Index (SCI):
- SCI and geographic distance
- concentration of social network and socio-economic charcteristics
- social connectedness and bilateral economic ties (trade, innovation)
- social connectedness and bilateral social activity (migration)
- SCI is openly available (upon request)

Social Conncectedness Index

1. Assign people to geographic areas
2. Calculate connectedness

$$
\begin{equation*}
S C I_{i j}=\frac{n_{i j}}{n_{i} \times n_{j}} \tag{1}
\end{equation*}
$$

where $n_{i j}$ are the number of users in country i that are friends with j (friendship is symmetric in FB!), n_{i} FB users in i and n_{j} users in j
3. Drop small counts and add noise: remove all locations with a low number of observations and add random noise to the number of friendships between each set of locations to ensure no one can be re-identified.
4. Final sampling: The final SCI is the average scale of friendship ties across 10 random draws from 99\% of active Facebook users to further protect privacy.

A: Relative Probability of Friendship Link to San Francisco County, CA

B: Relative Probability of Friendship Link to Kern County, CA

Determinants of Social Connectedness across County Pairs

	Dependent Variable: Log(SCI)				
	(1)	(2)	(3)	(4)	(5)
\log (Distance in Miles)	$\begin{aligned} & -1.483 * * * \\ & (0.065) \end{aligned}$	$\begin{aligned} & -1.287^{* * *} \\ & (0.061) \end{aligned}$	$\begin{aligned} & -1.160^{* * *} \\ & (0.059) \end{aligned}$	$\begin{aligned} & -1.988^{* * *} \\ & (0.043) \end{aligned}$	$\begin{aligned} & -1.214^{* * *} \\ & (0.055) \end{aligned}$
Same State		$\begin{aligned} & 1.496 \text { *** } \\ & (0.087) \end{aligned}$	$\begin{aligned} & 1.271^{* * * *} \\ & (0.083) \end{aligned}$	$\begin{aligned} & 1.216^{* * *} \\ & (0.044) \end{aligned}$	$\begin{aligned} & 1.496 * * * \\ & (0.085) \end{aligned}$
Δ Income (\$1,000)					$\begin{aligned} & -0.006^{* * *} \\ & (0.001) \end{aligned}$
Δ Share Population White (\%)					$\begin{aligned} & -0.012 * * * \\ & (0.001) \end{aligned}$
$\begin{aligned} & \Delta \text { Share Population } \\ & \text { No High School (\%) } \end{aligned}$					$\begin{aligned} & -0.012^{* * *} \\ & (0.002) \end{aligned}$
$\begin{aligned} & \Delta 2008 \text { Obama } \\ & \text { Vote Share (\%) } \end{aligned}$					$\begin{aligned} & -0.006^{* * *} \\ & (0.001) \end{aligned}$
$\begin{aligned} & \Delta \text { Share Population } \\ & \text { Religious (\%) } \end{aligned}$					$\begin{aligned} & -0.002 * * * \\ & (0.001) \end{aligned}$
County Fixed Effects	Y	Y	Y	Y	Y
Sample			>200 miles	<200 miles	
Number of observations	2,961,968	2,961,968	2,775,244	186,669	2,961,968
R^{2}	0.907	0.916	0.916	0.941	0.922

Note: Table shows results from a regression of the \log of the Social Connectedness Index on a number of explanatory variables. The \log of the geographic distance between the counties is the explanatory variable in column 1. In column 2, we include an additional control indicating whether both counties are within the same state. In columns 3 and 4, we restrict the sample to county-pairs that are more and less than 200 miles apart, respectively. The unit of observation is a county-pair. Standard errors are given in parentheses. The online Appendix (http://e-jep.org) provides more details on the data sources and exact specifications.
${ }^{*}$ **, and $* * *$ indicate significance levels of $p<0.1, p<0.05$, and $p<0.01$, respectively.

A: Average Income

C: Teenage Birth Rate

B: Percent No High School

D: Life Expectancy

Table 3

Social Connectedness and Across-Region Economic Interactions

	(1)	(2)	(3)	(4)
Panel A: Dependent Variable: \log (State-Level Trade Flows)				
\log (Distance)	$-1.057 * * *$		$-0.531^{* * *}$	$-0.533^{* * *}$
	(0.071)		(0.084)	(0.055)
\log (SCI)		$0.999^{* * *}$	$0.643^{* * *}$	$0.637 * * *$
		(0.051)	(0.071)	(0.060)
State Fixed Effects	Y	Y	Y	Y
Other State Differences	N	N	N	Y
Observations	2,219	2,220	2,219	2,219
R^{2}	0.912	0.918	0.926	0.930

Panel B: Dependent Variable: Indicator for Patent Citation

\log (Distance)	$\begin{aligned} & -0.048^{* * *} \\ & (0.002) \end{aligned}$		$\begin{aligned} & -0.011^{*} * \\ & (0.005) \end{aligned}$	$\begin{aligned} & -0.021 * * \\ & (0.009) \end{aligned}$
$\log (\mathrm{SCI})$		$\begin{aligned} & 0.063 * * * \\ & (0.003) \end{aligned}$	$\begin{aligned} & 0.049 * * * \\ & (0.006) \end{aligned}$	$\begin{aligned} & 0.066^{* * *} \\ & (0.012) \end{aligned}$
Technological Category + County Fixed Effects	Y	Y	Y	Y
Cited + Issued Patent Fixed Effects, Other County Differences	N	N	N	Y
Observations	2,171,754	2,171,754	2,171,754	2,168,285
R^{2}	0.056	0.059	0.059	0.101

Panel C: Dependent Variable: \log (County-Level Migration)

\log (Distance)	$-0.973^{* * * *}$		0.023	0.031
	(0.048)		(0.021)	(0.021)
$\log (\mathrm{SCI})$		$1.134^{* * *}$	$1.148^{* * *}$	$1.159^{* * *}$
		(0.019)	(0.024)	(0.024)
County Fixed Effects	Y	Y	Y	Y
Other County Differences	N	N	N	Y
Observations	25,305	25,305	25,305	25,287
R^{2}	0.610	0.893	0.893	0.893

Food for thought

- What could one do with SCI data?
- You can access the data at the link https://data.humdata.org/dataset/social-connectedness-index

Food for thought

- What could one do with SCI data?
- You can access the data at the link https://data.humdata.org/dataset/social-connectedness-index

International trade and social connectedness

Michael Bailey ${ }^{\text {a }}$, Abhinav Gupta ${ }^{\text {b }}$, Sebastian Hillenbrand ${ }^{\text {b }}$, Theresa Kuchler ${ }^{\text {b }}$, Robert Richmond ${ }^{\mathrm{b}, *}$, Johannes Stroebel ${ }^{\mathrm{b}}$
a Facebook, Inc, United States of America
${ }^{\mathrm{b}}$ Stern School of Business, New York University, United States of America

```
ARTICLE INFO
```


Article history:

Received 11 September 2020
Received in revised form 23 December 2020
Accepted 23 December 2020
Available online 29 December 2020
Dataset link: https://data.mendeley.com/ datasets/7wddm84w9r/1

JEL codes:
JEL
F1
F5
F5
F6

A B S T R A C T

We use de-identified data from Facebook to construct a new and publicly available measure of the pairwise social connectedness between 170 countries and 332 European regions. We find that two countries trade more when they are more socially connected, especially for goods where information frictions may be large. The social connections that predict trade in specific products are those between the regions where the product is produced in the exporting country and the regions where it is used in the importing country. Once we control for social connectedness, the estimated effects of geographic distance and country borders on trade decline substantially.
© 2020 Elsevier B.V. All rights reserved.

Table 2

Gravity Regressions - Goods Trade Heterogeneity in 2017.

	Dependent variable: Product-Specific Exports				
	(1)	(2)	(3)	(4)	(5)
$\log (\mathrm{SCI})$	$\begin{aligned} & 0.275^{* * *} \\ & (0.027) \end{aligned}$	$\begin{aligned} & 0.299^{* * *} \\ & (0.028) \end{aligned}$	$\begin{aligned} & 0.304^{* * *} \\ & (0.024) \end{aligned}$	$\begin{aligned} & 0.281^{* * *} \\ & (0.031) \end{aligned}$	$\begin{aligned} & 0.287^{* * *} \\ & (0.025) \end{aligned}$
$\log (\mathrm{SCI}) \times$ Share Exchange-Traded		$\begin{aligned} & -0.179^{* *} \\ & (0.080) \end{aligned}$	$\begin{aligned} & -0.148^{* *} \\ & (0.070) \end{aligned}$		
$\log (\mathrm{SCI}) \times$ Rule of Law Destination				$\begin{aligned} & -0.014 \\ & (0.021) \end{aligned}$	$\begin{aligned} & -0.010 \\ & (0.019) \end{aligned}$
$\log (\mathrm{SCI}) \times$ Rule of Law Origin				$\begin{aligned} & 0.000 \\ & (0.019) \end{aligned}$	$\begin{aligned} & 0.005 \\ & (0.015) \end{aligned}$
Origin Country \times Product FE	Y	Y	Y	Y	Y
Destination Country \times Product FE	Y	Y	Y	Y	Y
Other Gravity Controls	Y	Y	Y	Y	Y
\log (Distance) \times Product FE	Y	Y		Y	
Distance Group \times Product FE			Y		Y
R^{2}	0.932	0.933	0.946	0.932	0.946
N	2,597,760	2,597,760	2,597,760	2,597,760	2,597,760
N - Explained by FE	334,186	334,186	334,186	405,093	405,093

Note: Table shows results from regression 3. The dependent variable is exports of product category k from country i to country j in 2017. Product-level trade data are aggregated up to the first 2 digits of the HS96 product classification. Other gravity controls include a common border dummy, a common official language dummy, a dummy indicating whether the two countries had a common colonizer post-1945, and a dummy indicating whether the pair of countries was in a colonial relationship post-1945. We also separately control for the logarithm of distance interacted with product categories in columns 1,2,4 and for distance groups (dummies for percentiles of the distance distribution) interacted with product categories in columns 3 and 5 . Share Exchange-Traded refers to the proportion of exchange-traded products-based on the conservative classification scheme in Rauch (1999)-within a product category. Rule of law is obtained from the World Governance Indicators published by the World Bank. All specifications include fixed effects for the importer and exporter country interacted with product categories. Standard errors are clustered by exporter and importer country. The data include 165 countries and 96 product categories, which amounts to $2,597,760$ observations. Observations that are fully explained by the fixed effects are dropped before the PPML estimation. Significance levels: ${ }^{*}(p<0.10)$, ${ }^{* *}(p<0.05)$, ${ }^{* * *}(p<0.01)$.

TWITTER DATA

- Twitter Streaming API: 1% random sample of all tweets
> \rightarrow filters: keyword, geolocation
> \rightarrow between 40 and 60 per second
- 42 variables: text, username, user_lang, lang, followers, timezone, latitude, longitude, place, source,...
- Twitter Streaming API: 1 \% random sample of all tweets
\rightarrow filters: keyword, geolocation
\rightarrow between 40 and 60 per second
- 42 variables: text, username, user_lang, lang, followers, timezone, latitude, longitude, place, source,...
- Twitter Streaming API: 1 \% random sample of all tweets
\rightarrow filters: keyword, geolocation
\rightarrow between 40 and 60 per second
- 42 variables: text, username, user_lang, lang, followers, timezone, latitude, longitude, place, source,...
- Twitter Streaming API: 1% random sample of all tweets
\rightarrow filters: keyword, geolocation
\rightarrow between 40 and 60 per second
- 42 variables: text, username, user_lang, lang, followers, timezone, latitude, longitude, place, source,...

Ich bin mit einer 2.0 in der Klausur einer der Schlechtesten. Ich studiere das Falsche, glaube ich langsam.
(0) Translate from German
$Q 5$ โป

Timo Zander
@tinkengil
Replying to @ichmagdasnicht
offenbar nicht Mathematik
© Translate from German
5:22 PM - 18 Apr 2017 from Kiel, Germany
Q 1
$\uparrow \downarrow$
0
∇

Tweet your reply

Marvin || Runaways @ichmagdasnicht • 18 Apr 2017
Replying to @tinkengil
Wieso :D
$\bigcirc 1 \quad \uparrow \downarrow \quad 0 \quad \square$
Timo Zander @tinkengil •18 Apr 2017
ich erinnere mich an eine Horrorklausur mit 80\% Durchfallquote. Bestnote war 1,7. Völlig absurd was da gefordert wurde
(2) Translate from German

Q 1
$\uparrow ป$
01
θ
T
Marvin || Runaways @ichmagdasnicht • 18 Apr 2017
Gab's bei uns auch anfangs. Richtiger Horror.
(2) Translate from German

Q
ఒ】
$\bigcirc 1$
∇
example_tweet.json

"created_at": "Tue Apr 18 15:22:19 +0000 2017",

"id": 854354410041991168,
"id_str": "854354410041991168",
"text": "@ichmagdasnicht offenbar nicht Mathematik
"display_text_range": [
16,
43
1,
"source": "$ Tweetbot for $i 0 S</ a>$ ",
"truncated": false,
"in_reply_to_status_id": 854247992186073088,
"in_reply_to_status_id_str": "854247992186073088",
"in_reply_to_user_id": 2535411248,
"in_reply_to_user_id_str": "2535411248",
"in_reply_to_screen_name": "ichmagdasnicht",
"user": $\{$
"id": 19030252.
"id_str": "19030252",
"name": "Timo Zander"
"screen_name": "tinkengil",
"location": "Kiel",
"url": "http://about.me/timozander"
 "protected": false,
"verified": false,
"followers_count": 286,
"friends_count": 344,
"listed_count": 18,
"favourites_count": 1830,
"statuses_count": 12108,
"created_at": "Thu Jan 15 17:40:27 +0000 2009",
"utc_offset": 7200,
"time_zone": "Bern",
"geo_enabled": true,
"lang": "en",
"contributors_enabled": false,
"is_translator": false,
"profile_background_color": "EBEBEB",
"profile_background_image_url": "http://pbs.twimg.com/profile background images/590786545/5vyvydxrk528xhz91w86. jpeg",
"profile_background_image_url_https": "https://pbs.twimg.com/profile background images/590786545/5vyvydxrk528xhz91w86. 1 peq", "profile_background_tile": true,
"profile_link_color": "g90000",
"profile_sidebar_border_color": "FFFFFF",
"profile_sidebar_fill_color": "F3F3F3",
"profile_text_color": "333333",
"profile_use_background_image": false,
"profile_image_url": "http://pbs.twimg.com/profile images/549318880876048384/zag6999H normal. ipeq",
"profile_image_url_https": "https://pbs.twimg.com/profile_images/549318880876048384/zag6999H normal.jpeq"
"default_profile": false,
"profile_background_image_url": "http://pbs,twimg.com/profile background_images/590786545/5vyvydxrk528×hz91w86, ipeg",
(". "httos://pbs.twimg.com/profile background images/590786545/5vyvydxrk528xhz91w86. ipeq",
profile_background_tile": true
"profile_link_color": "990000",
"profile_sidebar_border_color": "FFFFFF",
"profile_sidebar_fill_color": "F3F3F3",
"profile_text_color": "333333",
"profile_use_background_image": false,
"profile_image_url": "http://pbs.twimg.com/profile images/549318880876048384/zag6999H normal.jpeq",
"profile_image_url_https": "https://pbs.twimg.com/profile_images/549318880876048384/zag6999H normal.jpeg",
"default_profile": false,
"default_profile_image": false,
"following": null,
"follow_request_sent": null,
"notifications": null
\},
"geo": 〔
"type": "Point",
"coordinates":
54.32436928,
10. 12301066
\},
"coordinates": £
"type": "Point",
"coordinates": [
10.12301066,
54.32436928

1
\},
"place": \{
"id": "1b9b5e83e647a7ed",
"url": "https://api,twitter.com/1.1/geo/id/1b9b5e83e647a7ed.json",
"place_type": "city",
"name": "Kiel",
"full_name": "Kiel, Germany",
"country_code": "DE",
"country": "Germany"
"bounding_box": £
"type": "Polygon",
"coordinates": |
I
10.032937,
54.250693
[,
10.032937,
54.432916
],

```
    coordinates": 
    [
                10.032937,
                54.250693
            ],
                10.032937,
            54.432916
        [,
            10.218568,
            54.432916
            1,
                10.218568,
            54.250693
        1
        ]
    },
        "attributes": {}
    },
    "contributors": null,
    "is_quote_status": false,
    "retweet_count": 0,
    "\mp@code{ravorite_count": 0,}
    "entities": {
    "hashtags": [],
    "urls": [],
    "user_mentions":
        f
            screen_name": "ichmagdasnicht",
            "name": "Marvin I| Runaways",
            "id": 2535411248,
            "id_str": "2535411248",
            "indices": [
            0,
            15
        }
    1,
    },
    },
    "favorited": false,
    "retweeted": false,
    "filter_level": "low",
    "lang": "de",
    "timestamp_ms": "1492528939148"
}
```


Twitter data in research

- Obvious: Text-mining
\rightarrow Brexit, Trump election,.. Gorodnichenko et al. (2018), De Lyon et al. (2018), Halberstam and Knight (2016)
- Not so obvious: Metadata \rightarrow Language distribution \rightarrow Migration

Twitter data in research

- Obvious: Text-mining
\rightarrow Brexit, Trump election,.. Gorodnichenko et al. (2018), De Lyon et al. (2018), Halberstam and Knight (2016)
- Not so obvious: Metadata

\rightarrow Language distribution

\rightarrow Migration

Twitter data in research

- Obvious: Text-mining
\rightarrow Brexit, Trump election,.. Gorodnichenko et al. (2018), De Lyon et al. (2018), Halberstam and Knight (2016)
- Not so obvious: Metadata
\rightarrow Language distribution
\rightarrow Migration

Twitter data in research

- Obvious: Text-mining
\rightarrow Brexit, Trump election,.. Gorodnichenko et al. (2018), De Lyon et al. (2018), Halberstam and Knight (2016)
- Not so obvious: Metadata
\rightarrow Language distribution
\rightarrow Migration

Hinz and Leromain (2018): Languages and trade

- Spatial distribution of languages in Europe
- Geolocation from "coordinates", and "user_lang" or "lang" \rightarrow large heterogeneity across and within countries
- Coordinates provided either by the user's device's GPS coordinates, or a self-assigned location

Barratt, J. Cheshire, and E. Manley (2013) use similar data for NY boroughs

Hinz and Leromain (2018): Languages and trade

- Spatial distribution of languages in Europe
- Geolocation from "coordinates", and "user_lang" or "lang"
\rightarrow large heterogeneity across and within countries
- Coordinates provided either by the user's device's GPS coordinates, or a self-assigned location

Barratt, J. Cheshire, and E. Manley (2013) use similar data for NY boroughs

Hinz and Leromain (2018): Languages and trade

- Spatial distribution of languages in Europe
- Geolocation from "coordinates", and "user_lang" or "lang"
\rightarrow large heterogeneity across and within countries
- Coordinates provided either by the user's device's GPS coordinates, or a self-assigned location
* Barratt, J. Chesinire, and E. Manley (2013) use similar data for NY boroughs

Hinz and Leromain (2018): Languages and trade

- Spatial distribution of languages in Europe
- Geolocation from "coordinates", and "user_lang" or "lang"
\rightarrow large heterogeneity across and within countries
- Coordinates provided either by the user's device's GPS coordinates, or a self-assigned location

Barratt, J. Cheshire, and E. Manley (2013) use similar data for NY boroughs

Hinz and Leromain (2018): Languages and trade

- Spatial distribution of languages in Europe
- Geolocation from "coordinates", and "user_lang" or "lang"
\rightarrow large heterogeneity across and within countries
- Coordinates provided either by the user's device's GPS coordinates, or a self-assigned location
\rightarrow Barratt, J. Cheshire, and E. Manley (2013) use similar data for NY boroughs

30

3

Bots and human users

- Bots: an issue, Chu et al. (2012) suggest only taking those sent from smart phones and official app
- 6.6 million unique human Twitter users
- 481,720 unique human Twitter users in Europe
- 73 different ianguages
- 25 \% tweet in more than 1 language, in Germany 31%
- 958,071 unique anguage-user observations

Bots and human users

- Bots: an issue, Chu et al. (2012) suggest only taking those sent from smart phones and official app
- 6.6 million unique human Twitter users
- 481,720 unique human Twitter users in Europe
- 73 different languages
- 25% tweet in more than 1 language, in Germany 31%
- 958,071 unique language-user observations

Bots and human users

- Bots: an issue, Chu et al. (2012) suggest only taking those sent from smart phones and official app
- 6.6 million unique human Twitter users
- 481,720 unique human Twitter users in Europe
- 73 different languages
- 25 \% tweet in more than 1 language, in Germany 31 \%
- 958,071 unique ianguage-user observations

Bots and human users

- Bots: an issue, Chu et al. (2012) suggest only taking those sent from smart phones and official app
- 6.6 million unique human Twitter users
- 481,720 unique human Twitter users in Europe
- 73 different languages
- 25% tweet in more than 1 language, in Germany 31%
- 958,071 unique language-user observations

Bots and human users

- Bots: an issue, Chu et al. (2012) suggest only taking those sent from smart phones and official app
- 6.6 million unique human Twitter users
- 481,720 unique human Twitter users in Europe
- 73 different languages
- 25 \% tweet in more than 1 language, in Germany 31 \%
- 958,071 unique language-user observations

Bots and human users

- Bots: an issue, Chu et al. (2012) suggest only taking those sent from smart phones and official app
- 6.6 million unique human Twitter users
- 481,720 unique human Twitter users in Europe
- 73 different languages
- 25 \% tweet in more than 1 language, in Germany 31 \%
- 958,071 unique language-user observations

Twitter and UK Census Population

Twitter and UK Census Main Language

Twitter and Eurobarometer

Hausmann, Hinz and Yildirim (2018): Venezuelan emigration

- Economic crisis in Venezuela: Large (?) number of refugees
- Dataset of geolocalized Tweets of people that tweeted from Venezuela between February 2017 and May 2018
$=5.4$ million tweets
$\rightarrow 490.000$ tweets from 30.000 human Twitter users
- Idea: What location(s) do they tweet from over time?

Hausmann, Hinz and Yildirim (2018): Venezuelan emigration

- Economic crisis in Venezuela: Large (?) number of refugees \rightarrow lack of official numbers
- Dataset of geolocalized Tweets of people that tweeted from Venezuela between February 2017 and May 2018
$\rightarrow 5.4$ million tweets
-490.000 tweeis firom 30.000 inuman Twitter users
- Idea: What location(s) do they tweet from over time?

Hausmann, Hinz and Yildirim (2018): Venezuelan emigration

- Economic crisis in Venezuela: Large (?) number of refugees \rightarrow lack of official numbers
- Dataset of geolocalized Tweets of people that tweeted from Venezuela between February 2017 and May 2018
$\rightarrow 5.4$ million tweets
$\rightarrow 490.000$ tweets from 30.000 human Twitter users
- Idea: What location(s) do they tweet from over time?

Hausmann, Hinz and Yildirim (2018): Venezuelan emigration

- Economic crisis in Venezuela: Large (?) number of refugees \rightarrow lack of official numbers
- Dataset of geolocalized Tweets of people that tweeted from Venezuela between February 2017 and May 2018
$\rightarrow 5.4$ million tweets
490.000 tweets from 30.000 human Twitter users
- Idea: What location(s) do they tweet from over time?

Hausmann, Hinz and Yildirim (2018): Venezuelan emigration

- Economic crisis in Venezuela: Large (?) number of refugees \rightarrow lack of official numbers
- Dataset of geolocalized Tweets of people that tweeted from Venezuela between February 2017 and May 2018
$\rightarrow 5.4$ million tweets
$\rightarrow 490.000$ tweets from 30.000 human Twitter users
- Idea: What location(s) do they tweet from over time?

Hausmann, Hinz and Yildirim (2018): Venezuelan emigration

- Economic crisis in Venezuela: Large (?) number of refugees \rightarrow lack of official numbers
- Dataset of geolocalized Tweets of people that tweeted from Venezuela between February 2017 and May 2018
$\rightarrow 5.4$ million tweets
$\rightarrow 490.000$ tweets from 30.000 human Twitter users
- Idea: What location(s) do they tweet from over time?

Distribution of countries

Migration and social media

- Hawelka (2014): global mobility patterns, tourism flows
- Jurdak (2015) city-to-city travel in Australia
- Morstatter (2013): random sample creates an accurate picture of the entire population of geolocated Tweets
- Question: How representative are geolocalized tweets?

Migration and social media

- Hawelka (2014): global mobility patterns, tourism flows
- Jurdak (2015) city-to-city travel in Australia
- Morstatter (2013): random sample creates an accurate picture of the entire population of geolocated Tweets
- Question: How representative are geolocalized tweets?

Migration and social media

- Hawelka (2014): global mobility patterns, tourism flows
- Jurdak (2015) city-to-city travel in Australia
- Morstatter (2013): random sample creates an accurate picture of the entire population of geolocated Tweets
- Question: How representative are geolocalized tweets?

Migration and social media

- Hawelka (2014): global mobility patterns, tourism flows
- Jurdak (2015) city-to-city travel in Australia
- Morstatter (2013): random sample creates an accurate picture of the entire population of geolocated Tweets
- Question: How representative are geolocalized tweets?

Population and Tweets

Population and Users

Representativeness of Twitter users in Venezuela

- "Digital in 2017 Global Overview report": 44% of Venezuelans social media, 35\% from mobile device
- "Tendencias Digitales": 56\% of internet users in Venezuela use Twitter or comparable social media services
- Twitter: penetration in Venezuela 26 \%

Representativeness of Twitter users in Venezuela

- "Digital in 2017 Global Overview report": 44% of Venezuelans social media, 35% from mobile device
- "Tendencias Digitales": 56% of internet users in Venezuela use Twitter or comparable social media services
- Twitter: penetration in Venezuela 26 \%

Representativeness of Twitter users in Venezuela

- "Digital in 2017 Global Overview report": 44% of Venezuelans social media, 35\% from mobile device
- "Tendencias Digitales": 56% of internet users in Venezuela use Twitter or comparable social media services
- Twitter: penetration in Venezuela 26 \%

Tweets per users

Days per users

How to make use not to capture tourists?

- narrow sample to users who
\rightarrow tweeted from Venezuela exclusively between Feb and May 17 (Period 1)
\rightarrow tweeted from a country exclusively between Feb and May '18 (Period 2)
- Everyone who is not in Venezuela in period 2: migrant
- reduces sample to 818 (!)
\rightarrow Problem: Large heterogeneity in tweet frequency

How to make use not to capture tourists?

- narrow sample to users who
\rightarrow tweeted from Venezuela exclusively between Feb and May '17 (Period 1)
\rightarrow tweeted from a country exclusively between Feb and May '18 (Period 2)
- Everyone who is not in Venezuela in period 2: migrant
- reduces sample to 818 (!)
\rightarrow Problem: Large heterogen eity in tweet frequency

How to make use not to capture tourists?

- narrow sample to users who
\rightarrow tweeted from Venezuela exclusively between Feb and May '17 (Period 1)
\rightarrow tweeted from a country exclusively between Feb and May '18 (Period 2)
- Everyone who is not in Venezuela in period 2: migrant
- reduces sample to 818 (!)
\rightarrow Problem: Large heteroger eity in tweet frequency

How to make use not to capture tourists?

- narrow sample to users who
\rightarrow tweeted from Venezuela exclusively between Feb and May '17 (Period 1)
\rightarrow tweeted from a country exclusively between Feb and May '18 (Period 2)
- Everyone who is not in Venezuela in period 2: migrant
- reduces sample to 818 (!)
\rightarrow Problem: Large heteroger eity in tweet frequency

How to make use not to capture tourists?

- narrow sample to users who
\rightarrow tweeted from Venezuela exclusively between Feb and May '17 (Period 1)
\rightarrow tweeted from a country exclusively between Feb and May '18 (Period 2)
- Everyone who is not in Venezuela in period 2: migrant
- reduces sample to 818 (!)
\rightarrow Problem: Large heterogeneity in tweet frequency

How to make use not to capture tourists?

- narrow sample to users who
\rightarrow tweeted from Venezuela exclusively between Feb and May '17 (Period 1)
\rightarrow tweeted from a country exclusively between Feb and May '18 (Period 2)
- Everyone who is not in Venezuela in period 2: migrant
- reduces sample to 818 (!)
\rightarrow Problem: Large heterogeneity in tweet frequency

Number of tweets over migration status

Note: Because of the heavy tail, the users who are at the top 90% of the tweet counts are top-coded t

Tweets by migrants and non-migrants in two periods

Accounting for heterogeneity of Tweet frequency

- Need weight to correct for sampling bias
- Suppose probability of individual i tweeting exactly x tweets in three-month period given by
- $t w_{i}$ random variable denoting tweets
\rightarrow assume this probability distribution constant across periods

Accounting for heterogeneity of Tweet frequency

- Need weight to correct for sampling bias
- Suppose probability of individual i tweeting exactly x tweets in three-month period given by

$$
p_{i, x}=\operatorname{Pr}\left\{t w_{i}=x\right\}
$$

- $t w_{i}$ random variable denoting tweets i
\rightarrow assume this probability distribution constant across periods

Accounting for heterogeneity of Tweet frequency

- Need weight to correct for sampling bias
- Suppose probability of individual i tweeting exactly x tweets in three-month period given by

$$
p_{i, x}=\operatorname{Pr}\left\{t w_{i}=x\right\}
$$

- $t w_{i}$ random variable denoting tweets i
\rightarrow assume this probability distribution constant across periods

Accounting for heterogeneity of Tweet frequency

- Twitter provides $s=0.01$ of all tweets, independent of user
$\rightarrow q=(1-s)=99 \%$ of Tweets not reported
- Denote $U^{1}\left(U^{2}\right)$ set all users observed at least once in period 1 (2)

Accounting for heterogeneity of Tweet frequency

- Twitter provides $s=0.01$ of all tweets, independent of user $\rightarrow q=(1-s)=99 \%$ of Tweets not reported
- Denote $U^{1}\left(U^{2}\right)$ set all users observed at least once in period 1 (2)

Accounting for heterogeneity of Tweet frequency

- Twitter provides $s=0.01$ of all tweets, independent of user $\rightarrow q=(1-s)=99 \%$ of Tweets not reported
- Denote $U^{1}\left(U^{2}\right)$ set all users observed at least once in period 1 (2)

Accounting for heterogeneity of Tweet frequency

- Probability of observing an individual who tweeted x_{i} times in period 1

$$
\operatorname{Pr}\left\{i \in U^{1} \mid t w w_{i}^{1}=x\right\}=1-q^{x} .
$$

- Probability of observing same individual who tweeted y_{i} times in period 2

Accounting for heterogeneity of Tweet frequency

- Probability of observing an individual who tweeted x_{i} times in period 1

$$
\operatorname{Pr}\left\{i \in U^{1} \mid t w_{i}^{1}=x\right\}=1-q^{x} .
$$

- Probability of observing same individual who tweeted y_{i} times in period 2

$$
\operatorname{Pr}\left\{i \in U^{2} \mid t w_{i}^{2}=y\right\}=1-q^{y} .
$$

Accounting for heterogeneity of Tweet frequency

- Assuming independence between the two sample, probability to be observed in both periods

$$
\begin{aligned}
\operatorname{Pr}\left\{i \in U^{1} \text { and } i \in U^{2}\right\}= & \sum_{x=0}^{\infty} \sum_{y=0}^{\infty} \operatorname{Pr}\left\{i \in U^{1} \mid t w_{i}^{1}=x\right\} \operatorname{Pr}\left\{t w_{i}^{1}=x\right\} \times \\
& \operatorname{Pr}\left\{i \in U^{2} \mid t w_{i}^{2}=y\right\} \operatorname{Pr}\left\{t w_{i}^{2}=y\right\} \\
= & \sum_{x=0}^{\infty} p_{i, x}\left(1-q^{x}\right) \sum_{y=0}^{\infty} p_{i, y}\left(1-q^{y}\right) \\
= & \left(1-E_{i}\left[q^{x}\right]\right)^{2}=\left(1-G_{i}(q)\right)^{2}
\end{aligned}
$$

- $G_{i}(q)$ probability generating function

Accounting for heterogeneity of Tweet frequency

- Model the individuals' tweeting behavior as a Poisson process
- Assume each individual has Poisson tweet rate in a three month period
- With Poisson distribution, rewrite the probability generating function as

Accounting for heterogeneity of Tweet frequency

- Model the individuals' tweeting behavior as a Poisson process
- Assume each individual has Poisson tweet rate in a three month period λ_{i}
- With Poisson distribution, rewrite the probability generating function as

Accounting for heterogeneity of Tweet frequency

- Model the individuals' tweeting behavior as a Poisson process
- Assume each individual has Poisson tweet rate in a three month period λ_{i}
- With Poisson distribution, rewrite the probability generating function as

$$
G_{i}(q)=e^{-\lambda_{i}(1-q)}=e^{-\lambda_{i} s} .
$$

Accounting for heterogeneity of Tweet frequency

- Hence probability of being observed in both periods

$$
\begin{equation*}
\operatorname{Pr}\left\{i \in U^{0} \text { and } i \in U^{1}\right\}=\left(1-e^{-\lambda_{i} s}\right)^{2} \tag{2}
\end{equation*}
$$

with $s=0.01$ in our case.

Net outflow over time

		(1) Venezuela	(2) Colombia	(3) Argentina	(4) Brazil	(5) Germany	(6) Venezuela	(7) Colombia
Emigration	unweighted	6,76\%	7,78\%	7,62\%	3,88\%	11,59\%	6,99\%	6,06\%
	weighted	9,59\%	7,84\%	7,92\%	3,97\%	13,18\%	7,98\%	6,10\%
Immigration	unweighted	2,01\%	5,21\%	10,48\%	3,59\%	11,27\%	1,77\%	5,21\%
	weighted	2,22\%	5,48\%	10,70\%	3,67\%	12,41\%	1,70\%	5,37\%
Difference	unweighted	-4,75\%	-2,57\%	2,86\%	-0,29\%	-0,32\%	-5,22\%	-0,85\%
	weighted	-7,37\%	-2,36\%	2,78\%	-0,30\%	-0,77\%	-6,28\%	-0,73\%
Annualized weighted perc.		-9,7\%	-3,1\%	3,7\%	-0,4\%	-1\%	-12,1\%	-1,4\%
Period 1 Period 2		02-04/17	02-04/17	02-04/17	02-04/17	02-04/17	12/16-04/17	12/16-04/17
		02-04/18	02-04/18	02-04/18	02-04/18	02-04/18	12/17-04/18	12/17-04/18

[^0]Computed emigration and immigration numbers

Distribution of countries

Conclusion

- Social media data allows researchers to observe people, revealed preferences
- Design of exercise important: Endogeneity, sampling, ...

Social Media Data

DSIER [/dr'zarər/]
Julian HInz and Irene lodice
Bielefeld University

[^0]: Source: Authors' calculations.

