Satellite imagery — Part 2

DSIER [/dɪ'zaɪər/] — Summer 2022

Julian Hinz

Bielefeld University

Data models

- vector data
- raster data

pacman::p_load(sf) # classes and functions for vector data
pacman::p_load(terra) # classes and functions for raster data

low level libraries for geocomputation

- GDAL, for reading, writing and manipulating a wide range of geographic data formats
- PR0J, a powerful library for coordinate system transformations
- GEOS, a planar geometry engine for operations such as calculating buffers and centroids on data with a projected CRS
- S2, a spherical geometry engine written in C++ developed by Google

sf — simple features

- sf objects can be treated as data frames in most operations
- sf function names are relatively consistent and intuitive (all begin with st_)
- sf functions can be combined using %>% operator and works well with the tidyverse

sf classes

- terra is a reboot of the raster package
- very fast for what it's doing
- lots of interfaces between terra and sf
- alternative: stars

Raster

A. Cell IDs

B. Cell values

C. Colored values

1	2	3	4	92	55	48	21			
5	6	7	8	58	70	NA	37			
9	10	11	12	NA	12	94	11			
13	14	15	16	36	83	4	88			

Raster

A. Continuous data

B. Categorical data

